
1
CIS 422/522

Achieving System Qualities Through
Software Architecture II

The meaning of “design”
Architectural views
Modules and the module structure

CIS 422/522 © S. Faulk 2

Qualities Established in Architecture

Behavioral (observable)
• Performance
• Security
• Availability
• Reliability
• Usability

Properties resulting from the
properties of components,
connectors and interfaces
that exist at run time.

Developmental Qualities
• Modifiability(ease of change)
• Portability
• Reusability
• Ease of integration
• Understandability
• Provide independent work

assignments

Properties resulting from the
properties components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.

2
CIS 422/522

CIS 422/522 © S. Faulk 3

Importance

• Customer experience: behavioral quality
attributes drive the customer experience

• Development challenges: developmental
quality attributes drive developmental
difficulty

• Success depends on managing quality as
well as functional requirements

CIS 422/522 © S. Faulk 4

Functionality, Architecture, and
Quality Attributes

• Functionality and quality attributes are
orthogonal

• Quality attributes are typically whole system
properties
– Must be considered throughout design,

implementation, and deployment
• Satisfactory results depends on:

– Getting the big picture (architecture) right
– Then getting the details (implementation) right

3
CIS 422/522

CIS 422/522 © S. Faulk 5

Example: Performance

• Ex: Performance depends on
– How much inter-component communication is

necessary (Arch)
– What functionality has been allocated to each

component (Arch)
– How shared resources are allocated (Arch)
– The choice of algorithms to implement functionality

(Non-arch)
– How algorithms are coded (Non-arch)

CIS 422/522 © S. Faulk 6

Product Development Cycle and
Architecture

Business Goals
Hardware
Software
Marketing
other

Product Planning
Economic Evaluation
Development Strategy
Marketing Strategy
Prioritization

Requirements
Capabilities
Qualities
Reusability

Architecture
Tradeoffs of
quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

Stakeholder goals

Design decisions,
tradeoffs and constraints Goal: Keep architectural

design decisions in synch
with developmental goals
•ConOps <> Req <> Design
•Traceability to code
•Mechanisms for maintaining
“intellectual control”

4
CIS 422/522

CIS 422/522 © S. Faulk 7

Software Engineering Architecture

• Goal is to keep developmental goals and
architectural capabilities in synch

• Proceed from an understanding of desired
qualities to an acceptable system design
– Balance of stakeholder priorities and constraints
– Requires making design tradeoffs
– Documentation must communicate how this is

accomplished

CIS 422/522 © S. Faulk 8

Implications for the Development
Process

Implies need to address architectural concerns
throughout the development process:

• Understanding the “business case” for the system
• Understanding the quality requirements
• Designing the architecture to meet quality goals**
• Representing and communicating the architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the architecture
• Ensuring the implementation conforms to the

architecture

5
CIS 422/522

What is “design?”

CIS 422/522 © S. Faulk 10

Meaning of “Design”

• What does it mean to say that we are going to
“design the software?”

• What is the basis for making a design decision?
• How do we know when we are done?
• If we did a good job? What makes a good

design?

6
CIS 422/522

CIS 422/522 © S. Faulk 11

The Design Space

• A Design: is (a representation of) a
solution to a problem
– Represents a set of choices

• Typically very large set of possible
choices

• Must navigate through possibilities
• Invariably requires tradeoffs

– Possible choices are limited by
assumptions and constraints

• Must be ISO 2000 compliant,
legacy compatible, etc.

• May not use v.1 library routines
– Some designs are better than

others (notion of good design)

Problem
Space

Possible
Solutions “Good”

solutions
(designs)

Our
designx x x

x x x

Design
Constrains

CIS 422/522 © S. Faulk 12

Design Means…
• Design Goals: the purpose of design is to solve

some problem in a context of assumptions and
constraints
– Solution: acceptable balance of system qualities
– Assumptions: what must be true of the design
– Constraints: what should not be true

• Process: design proceeds through a sequence of
decisions
– A good decision brings us closer to the design goals
– An idealized design process systematically makes

good decisions
– Any real design process is chaotic

• Good Design: by definition a good design is one
that satisfies the design goals

7
CIS 422/522

CIS 422/522 © S. Faulk 13

Elements of Architectural Design

• Design goals
– What are we trying to accomplish in the

decomposition?
• Relevant Structure

– How to we capture and communicate design
decisions?

– Which structures should we use?
• Decomposition principles

– How do we distinguish good design decisions?
– What decomposition (design) principles support the

objectives?
• Evaluation criteria

– How do I tell a good design from a bad one?
13

Architectural Views

8
CIS 422/522

CIS 422/522 © S. Faulk 15

Which structures should we use?

• Choice of structure depends the specific design
goals

• Compare to architectural blueprints
– Different blueprint for load-bearing structures,

electrical, mechanical, plumbing

Structure Components Interfaces Relationships

Calls Structure Programs
(methods,
services)

Program interface and
parameter declarations

Invokes with
parameters
(A calls B)

Data Flow Functional tasks Data types or
structures

Sends-data-to

Process Sequential
program (process,
thread, task)

Scheduling and
synchronization
constraints

Runs-concurrently-
with, excludes,
precedes

CIS 422/522 © S. Faulk 16

Elevation/Structural

© S. Faulk 2010 16

9
CIS 422/522

CIS 422/522 © S. Faulk 17

Floor Plan

CIS 422/522 © S. Faulk 18

Electrical Plan

10
CIS 422/522

CIS 422/522 © S. Faulk 19

Models/Views

• Each is a view of the same house
• Different views answer different kinds of questions

– How many electrical outlets are available in the kitchen?
– What happens if we put a window here?

• Designing for particular software qualities also
requires the right architectural model or “view”
– Any model can present only a subset of system structures

and properties
– Different models allows us to answer different kinds of

questions about system properties
– Need a model that makes the properties of interest and the

consequences of design choices visible to the designer, e.g.
• Process structure for run-time property like performance
• Module structure for development property like maintainability

CIS 422/522 © S. Faulk 20

Example:
Data Model View

• Data Model Architecture
– Entities: data structures
– Relations: cardinality,

aggregation,
generalization/specialization

– Interface: attributes
• Model/communicate

structure of complex data
– What data is kept?
– How is it related?
– How is it structured and

accessed in the system?

11
CIS 422/522

CIS 422/522 © S. Faulk 21

Which structures should we use?

• Choice of structure depends the specific design goals
– Compare to architectural blueprints

• Choose minimal set of structures that
– Make key design issues visible
– Communicate key design decisions

• Which views would be useful for Address Book?

Structure Components Interfaces Relationships

Calls Structure Programs
(methods,
services)

Program interface
and parameter
declarations

Invokes with
parameters
(A calls B)

Data Flow Functional tasks Data types or
structures

Sends-data-to

Process Sequential
program
(process, thread,
task)

Scheduling and
synchronization
constraints

Runs-concurrently-
with, excludes,
precedes

CIS 422/522 © S. Faulk 22

Some Key Architectural Structures

• Module Structure
– Decomposition of the system into work assignments or

information hiding modules
– Most influential design time structure

• Modifiability, work assignments, maintainability, reusability,
understandability, etc.

• Uses Structure
– Determine which modules may use one another’s services
– Determines subsetability, ease of integration (e.g. for

increments)
• Process Structure

– Decomposition of the runtime code into threads of control
– Determines potential concurrency, real-time behavior

12
CIS 422/522

The Module Structure

CIS 422/522 © S. Faulk 24

Modularization

• For any large, complex system, must divide
the coding into work assignments (WBS)

• Each work assignment is called a “module”
• Properties of a “good” module structure

– Parts can be designed independently
– Parts can be tested independently
– Parts can be changed independently
– Integration goes smoothly

13
CIS 422/522

CIS 422/522 © S. Faulk 25

Modularization Goals

• Reduces complexity, improves manageability
• Coding

– Can write modules with little knowledge of other modules
– Replace modules without reassembling the whole system

• Managerial
– Allows concurrent development
– Avoids “Mythical Man Month” effect (“adding people to a late

software project makes it later”)
• Flexibility/Maintainability

– Anticipated changes affect only a small number of modules
– Can calculate the impact and cost of change

• Review/communicate
– Can understand or review the system one module at a time

CIS 422/522 © S. Faulk 26

Notional Modules

Problem

Interface

Encapsulated

Interface

Encapsulated Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

14
CIS 422/522

CIS 422/522 © S. Faulk 27

What is a module?

• Concept due to David Parnas (conceptual basis for
objects)

• A module is characterized by two things:
– Its interface: services that the module provides to other parts

of the systems
– Its secrets: what the module hides (encapsulates).

Design/implementation decisions that other parts of the
system should not depend on

• Modules are abstract, design-time entities
– Modules are “black boxes” – specifies the visible properties

but not the implementation
– May, or may not, directly correspond to programming

components like classes/objects
• E.g., one module may be implemented by several objects

CIS 422/522 © S. Faulk 28

A Simple Module

• A simple integer stack
– push: push integer on stack top
– pop: remove top element
– top: get value of top element

• What information is on the
interface?

• What are the secrets?
• What information is

missing?
• Why is this an abstraction?

stack
int top()

push(int)

pop()

15
CIS 422/522

CIS 422/522 © S. Faulk 29

A Simple Module

• A simple integer stack
• The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.
– push: push integer on stack top
– pop: remove top element
– top: get value of top element

• The secrets (encapsulated) any
details that might change from one
implementation to another
– Data structures, algorithms
– Details of class/object structure

• A module spec is abstract:
describes the services provided but
allows many possible
implementations

• Note: a real spec needs much more
than this (discuss later)

stack
int top()

push(int)

pop()

CIS 422/522 © S. Faulk 30

Why these properties?

Module Implementer
• The specification tells me

exactly what capabilities my
module must provide to users

• I am free to implement it any
way I want to

• I am free to change the
implementation if needed as
long as I don’t change the
interface

Module User
• The specification tells me how

to use the module’s services
correctly

• I do not need to know anything
about the implementation
details to write my code

• If the implementation changes,
my code stays the same

Key idea: the abstract interface specification defines
a contract between a module’s developer and its users

that allows each to proceed independently

16
CIS 422/522

CIS 422/522 © S. Faulk 31

Is a module a class/object?

• The programming language concepts of classes and
objects are based on Parnas’ concept of modules

• To separate design-time concerns from coding
issues, however, they are not the same thing
– A module must be a work assignment at design time, does

not dictate run-time structures
– Coder free to implement with a different class structure as

long as the interface capabilities are provided
– Coder free to make changes as long as the interface does

not change
• In simple cases, we will often implement each

module as a class/object

Questions?

